skip to main content


Search for: All records

Creators/Authors contains: "Lei, Jing"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    In genomics studies, the investigation of gene relationships often brings important biological insights. Currently, the large heterogeneous datasets impose new challenges for statisticians because gene relationships are often local. They change from one sample point to another, may only exist in a subset of the sample, and can be nonlinear or even nonmonotone. Most previous dependence measures do not specifically target local dependence relationships, and the ones that do are computationally costly. In this paper, we explore a state-of-the-art network estimation technique that characterizes gene relationships at the single cell level, under the name of cell-specific gene networks. We first show that averaging the cell-specific gene relationship over a population gives a novel univariate dependence measure, the averaged Local Density Gap (aLDG), that accumulates local dependence and can detect any nonlinear, nonmonotone relationship. Together with a consistent nonparametric estimator, we establish its robustness on both the population and empirical levels. Then, we show that averaging the cell-specific gene relationship over mini-batches determined by some external structure information (eg, spatial or temporal factor) better highlights meaningful local structure change points. We explore the application of aLDG and its minibatch variant in many scenarios, including pairwise gene relationship estimation, bifurcating point detection in cell trajectory, and spatial transcriptomics structure visualization. Both simulations and real data analysis show that aLDG outperforms existing ones.

     
    more » « less
  2. Summary

    Sparse principal component analysis is an important technique for simultaneous dimensionality reduction and variable selection with high-dimensional data. In this work we combine the unique geometric structure of the sparse principal component analysis problem with recent advances in convex optimization to develop novel gradient-based sparse principal component analysis algorithms. These algorithms enjoy the same global convergence guarantee as the original alternating direction method of multipliers, and can be more efficiently implemented with the rich toolbox developed for gradient methods from the deep learning literature. Most notably, these gradient-based algorithms can be combined with stochastic gradient descent methods to produce efficient online sparse principal component analysis algorithms with provable numerical and statistical performance guarantees. The practical performance and usefulness of the new algorithms are demonstrated in various simulation studies. As an application, we show how the scalability and statistical accuracy of our method enable us to find interesting functional gene groups in high-dimensional RNA sequencing data.

     
    more » « less
  3. Mathelier, Anthony (Ed.)
    Abstract Motivation Marker genes, defined as genes that are expressed primarily in a single-cell type, can be identified from the single-cell transcriptome; however, such data are not always available for the many uses of marker genes, such as deconvolution of bulk tissue. Marker genes for a cell type, however, are highly correlated in bulk data, because their expression levels depend primarily on the proportion of that cell type in the samples. Therefore, when many tissue samples are analyzed, it is possible to identify these marker genes from the correlation pattern. Results To capitalize on this pattern, we develop a new algorithm to detect marker genes by combining published information about likely marker genes with bulk transcriptome data in the form of a semi-supervised algorithm. The algorithm then exploits the correlation structure of the bulk data to refine the published marker genes by adding or removing genes from the list. Availability and implementation We implement this method as an R package markerpen, hosted on CRAN (https://CRAN.R-project.org/package=markerpen). Supplementary information Supplementary data are available at Bioinformatics online. 
    more » « less
  4. Forward selection (FS) is a popular variable selection method for linear regression. But theoretical understanding of FS with a diverging number of covariates is still limited. We derive sufficient conditions for FS to attain model selection consistency. Our conditions are similar to those for orthogonal matching pursuit, but are obtained using a different argument. When the true model size is unknown, we derive sufficient conditions for model selection consistency of FS with a data‐driven stopping rule, based on a sequential variant of cross‐validation. As a byproduct of our proofs, we also have a sharp (sufficient and almost necessary) condition for model selection consistency of “wrapper” forward search for linear regression. We illustrate intuition and demonstrate performance of our methods using simulation studies and real datasets.

     
    more » « less
  5. null (Ed.)